( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s.
|
|
- Φυλλίς Δελή
- 7 χρόνια πριν
- Προβολές:
Transcript
1 معادلات ديفرانسيل + f() d تبديل لاپلاس تابع f() را در نظر بگيريد. همچنين فرض كنيد ( R() > عدد مختلط با قسمت حقيقي مثبت) در اين صورت صورت وجود لاپلاس f() نامند و با قضايا ) ضرب در (انتقال درحوزه S) F() L(f (() = نمايش ميدهند و به آن تبديل لاپلاس يك طرفه هم ميگويند. را در + a f() f() (a) d = F( a) L(f ()) F () L( f ()) ( ) F () () Lf( ( )u( ) ) F() L(f ()) F() f ( ) L(f ()) F() f ( ) f ( ) f ( ) ( ) f() L f( τ)dτ + f() L F()d L f () g() F().G() ( ) lim f () = lim F() + lim f () = lim F() + + L( δ ()) = L( ) L ( u() ) d + = = = = ()! L( ) = ( ) = + a ) ضرب در تعميم ( > ) ) انتقال در حوزه ) مشتق تعميم 5) انتگرال 6) تقسيم بر 7) كانولوشن 8) قضيه مقدار اوليه 9) قضيه مقدار نهايي محاسبه تبديل لاپلاس برخي توابع δ() (ضربه) ( ( u() (پله) ( ) (
2 ( ) L( α Γα+ ) = α+ ai + ia L( ) = = ia a a L(co a + ii a) = + i L(co a) =, L(i a) = a + a L = L(ch(a)) = + = a + a a a a a L(h(a)) = L = = a + a a + مثال- كدام گزينه صحيح است L(f (() = l ( α ) α ( (5 6 و (7 (8 (9 f() ( در صفر جهشي برابر دارد در صفر پيوسته است در صفر ضربه دارد f() مجانبي به معادله f()= دارد. ( + l + lim l = lim = lim + = = f ( + ) از قضيه مقدار اوليه بهره ميبريم: )f چيزي گفته نشده آن را صفر ميگيريم. بنابراين f() در = جهشي برابر يك دارد براي مجانب از قضيه مقدار چون در مورد ) lim l + = f () = مجانب f() = f() f() f() ( ( نهايي بهره خواهيم برد. lim f () = اگر ميشد آنگاه تابع در داراي ضربه ميشد. در اينجا در صفر ضربهاي با قدرت واحد دارد. + + = ( ) و = ( ) مثال- تبديل لاپلاس جواب معادله = و معادله داده شده معادله بسل مرتبه با شرايط اوليه است لذا Y() تبديل لاپلاس لاپلاس ميگيريم: چيست J() است. از معادله با توجه به قضاياي ياد شده ( Y() ( ) ( )) + Y() ( ) Y () = Y Y () + + Y Y = ( + )Y () Y() = Y = l Y = l( + ) + c Y + c Y() = lim Y() = = c Y() = + + F() f() = را حساب كنيد. مثال- اگر π) i u( ( ) ( ) f() = π ( π) i( π)u( π) L i = L(f()) = F() = π π ( + ) + ( + ) + f() = F( ) f() مثال- اگر تبديل فوريه f() باشد چيست F( ) = d = =
3 aω ω برق/ معادلات ديفرانسيل معادله اشتورم ليوويل d d p + (q +λρ ) = اين معادله فرم كلي چند معادله اخير است كه به صورت روبرو است: d d p q λρ p + p + (q +λρ )= = d d d p d p p اين معادله با شرايط مرزي همگن در = a و = b داراي يك سري توابع ويژه و مقادير ويژه نظير آنها ميباشد. ميتوان نشان داد كه اگر b ρ() ϕ() ϕ m()d = a λ m λ و () ϕ m دو تابع ويژه نظير دو مقدار ويژه مثال- در معادله روبرو مقادير ويژه و و توابع ويژه نظير آنها را بيابيد. باشند هموازه بر هم عمودند البته با وزن تابع ρ يعني: + +λ = d d ( ) = ( ) = D + D +λ= (D + ) +λ = λ بحث كنيم: = λ (الف {, } λ =ω ( ) ( ) (ب { +ω, +ω } λ =ω (ج { coω, iω} c مشتق c ( ) = غ ق ق = c = = C( ( +ω ) ( ω ) ) ( ) = ( λ) ϕ () بايد روي مقادير ويژه اگر حالت الف) c قابل قبول است لذا = λ مقدار ويژه و c تابع ويژه است. ( ) جزء شرايط اوليه بود آنگاه حالت الف غير قابل قبول ميشد: = * چون تابع ويژه غير صفر است.* حالت ب) كه جوابهاي اين معادله يا تابع مشتق در = c ( +ω ) ( +ω ) + ( +ω ) ( ω ) = C = است كه هر دو غير قابل قبولند. = i ω = i ω +ω coω = = iω+ωcoω= aω=ω ω=ω > ω= حالت ج) π ( m ) ωπ ω 5π مقادير ويژه ρ i. i d ρ= ; m = +ω Φ () = iω ( + ) π ω و يك نتيجه اين است كه: براي هاي به قدر كافي بزرگ است و ميتوان توابع ويژه را به صورت زير تقريب زد:
4 ( ) π ϕ () = i l ( ) +α( α+ )= برق/ معادلات ديفرانسيل ( ) () + π ϕ = i >> + را با فرض ( ) = و () = بيابيد. +λ = مثال- توابع ويژه و مقادير ويژه d d غقق }, λ= {l D(D ) + D +λ= D +λ= D =λ λ=ω قق } {coωl,i ωl λ=ω { ω, ω غقق } شرط مرزي () = باعث غير قابل قبول شدن دو جواب اول و سوم شده است. c ω ( ) π = = ciωl () =ω ccoω l حالت دوم = coω= ω = ( ) π λ=ω و تابع ويژه: = مقدار ويژه: : معادله لژندار مثال- در معادله لژاندر مقادير q p و ρ و λ را تعيين كنيد: P = ρ و q توابعي از هستند و, q +ρλ=α +α q =, ρ=, λ=α( α+ ) λ عدد ثابتي است. بنابراين مقدار ويژه تابع لژاندر ) ( αα+ ميباشد. )= : + + ( ν تابع بسل مثال- در مورد تابع بسل مثال قبل را تكرار كنيد. ν = p=,q=, ρ=+, λ=ν توجه كنيد كه معمولا ρ> گرفته ميشود.. J ()J m()d = m در ضمن شرايط مرزي همگن در = و + = است لذا + اشتورم ليوويل است +λ = مثال- آيا معادله + +λ = p=, ρ=,q= اشتورم ليوويل است λ=λ و + + ( 6 )= مثال- جواب معادله داده شده چيست co i + + ( بسل )= J (),J () =, + + = ( ) = مثال- معادله روبرو را حل كنيد: يك روش حل اين معادلات ايده تبديل به معادله بسل است كه اين كار به دو روش انجام ميشود. يكي «تعويض تابع» كه به صورت زير v v v + bv u + u + u = v v v + = v = v= c لذا: v است: v a براي بسل شدن بايد = + v
5 كه اين درست نيست چون v بايد متغير باشد. لذا روش «تعويض تابع» در uv بدرد نميخورد. روش ديگر روش «تعويض متغير» است كه به شرح زير است: g (z) g (z) d dz dz dz = g(z) =, = d g (z) d (g (z)) g g = g a g g z + b= b= + g + bg d d g dz g g dz dz g dz v bg =λ z در اين مثال داريم: g g g kg + + g + g lg lg lkz g gzk g z k = + = + = = = = dz g g dz g g g z g z v g باشد. بنابراين: =λ k هر چيزي ميتواند باشد ولي بايد g z k k k k k k= kz = z + + z = + + = بسل مرتبه صفر z k z z پس جواب ) ( J(z) = J است. + ( + ) + = v + v v= = = + تعويض تابع v v ( ) u + u + u = ( + ) + u + u + u = u + u+ u = u = J () = J () d d d. همچنين A() به صورت = = d d d مثال- معادله روبرو را به بسل تبديل كرده و جواب آن را بيابيد. معادله بسل مرتبه شد. لذا دستگاه معادلات خطي تعريف ميكنيم. aij را تعريف ميكنيم. بردار () = A()() + u() () = A()() SX() ( ) = A() X(). تعريف ميكنيم ; = فرض كنيد u() عضو تايي u() u = را نيز به صورت u () دستگاه معادلات خطي روبرو را در نظر بگيريد: براي حل ابتدا معادله همگن را حل ميكنيم: از طرفين تبديل لاپلاس ميگيريم: 5
6 () = Α ( ) + Aτ u( τ)dτ برق/ معادلات ديفرانسيل SX() ( ) = AX() حالت خاص A() = A ثابت باشد: (SI A)X() = ( ) X() = (SIA) ( ) نمايش ميدهند. در واقع A (A (SI ϕ() را ماتريس انتقال حالت A گويند و با تعريف: ϕ()) = L( A = I + A + A + A +...!! A A A I A A (SI A) = I A = S I = S S S S S S ϕ () = I + A + A عكس لاپلاس +... = A! X A h() = (SI A) ( ), h() = ( ) تا اينجا جواب همگن را به دست آورديم. حال سو ال پيدا كردن جواب خصوصي است. اگر از رابطه كلي لاپلاس ميگرفتيم: SX() ( ) = AX() + U() ( SI A) X() ( ) U() X() ( SI A) ( ) = + = + ( SI A) U() مثال- ( ) = + = = + ( ) + ( ) ( ) A (SI A) = = = ( ) = ( + ) ( + ) ch h () ch h () () ch h ϕ = = = h ch () h ch τ τ τ d + h ch τ τ τ h τ τ = + d ch τ τ τ τ + = + dτ τ + τ τ τ = + τ τ ( ) ( ch h () ) = + h ch ( ) ( ) 6
7 = = ( ) تبديل معادله خطي مرتبه به دستگاه برداري به شكل روبرو تشكيل ميدهيم: () ( ) + = b با توجه به تعريف فوق و معادله ديفرانسيل خطي مرتبه داده شده داريم: = = = = =aa a a + b A = ; u = b a a a a a + را به دستگاه تبديل كنيد: + = مثال- = = = A = ; u = = +. را متغير حالت مينامند. مسير متغير حالت در را مسير حالت گويند كه يك منحني است در فضاي R () نقطه شروع ( ) ( ) مسير حالت نقطه خاتمه ( ) ( ) ( ) 7
8 = 8 مثال- در منحني حالت داده شده اگر در زمان باشد در همين زمان چند است () = 0 ( ) = با توجه به منحني ( ) = ( ) = 8 ( ) = ( ) =? 8 = ( ) = / در اينجا منظور انتهاي مسر حالت است. مسير حالت به شرايط اوليه شديدا وابسته است. جايي كه حل معادله برايمان مشكل است ولي مسير حالت را ميتوانيم تشخيص دهيم اين مسير بدرد ميخورد. = = = + SX = X X = () = = l SY = X + Y = + Y Y() = = ( ) ( ) مثال- مسير حالت را بيابيد. () = مسير حالت: = l > = l+ =l براي رسم مسير از رابطه به دست آمده مشتق ميگيريم = ; =, تعقر رو به پايين < = = 8
( ) x x. ( k) ( ) ( 1) n n n ( 1) ( 2)( 1) حل سري: حول است. مثال- x اگر. يعني اگر xها از = 1. + x+ x = 1. x = y= C C2 و... و
معادلات ديفرانسيل y C ( ) R mi i كه حل سري يعني جواب دقيق ميخواهيم نه به صورت صريح بلكه به صورت سري. اگر فرض كنيم خطي باشد, اين صورت شعاع همگرايي سري فوق, مينيمم اندازه است جواب معادله ديفرانسيل i نقاط
Διαβάστε περισσότεραرياضي 1 و 2. ( + ) xz ( F) خواص F F. u( x,y,z) u = f = + + F = g g. Fx,y,z x y
رياضي و رياضي و F,F,F F= F ˆ ˆ ˆ i+ Fj+ Fk)F ديورژانس توابع برداري ديورژانس ميدان برداري كه توابع اسكالر و حقيقي هستند) به صورت زير تعريف ميشود: F F F div ( F) = + + F= f در اين صورت ديورژانس گراديان,F)
Διαβάστε περισσότεραO 2 C + C + O 2-110/52KJ -393/51KJ -283/0KJ CO 2 ( ) ( ) ( )
به كمك قانون هس: هنري هس شيميدان و فيزيكدان سوي يسي - روسي تبار در سال ۱۸۴۰ از راه تجربه دريافت كه گرماي وابسته به يك واكنش شيمياي مستقل از راهي است كه براي انجام ا ن انتخاب مي شود (در دماي ثابت و همچنين
Διαβάστε περισσότεραe r 4πε o m.j /C 2 =
فن( محاسبات بوهر نيروي جاذبه الکتروستاتيکي بين هسته و الکترون در اتم هيدروژن از رابطه زير قابل محاسبه F K است: که در ا ن بار الکترون فاصله الکترون از هسته (يا شعاع مدار مجاز) و K ثابتي است که 4πε مقدار
Διαβάστε περισσότεραﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ
1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد
Διαβάστε περισσότερα10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ
فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد.
Διαβάστε περισσότερα:نتوين شور شور هدمع لکشم
عددی آناليز جلسه چھارم حل معادلات غير خطي عمده روش نيوتن: مشکل f ( x را در f ( x و برای محاسبه ھر عضو دنباله باید ھر مرحله محاسبه کرد. در روشھای جایگزین تقریبی f ( x x + = x f جایگزین میکنم کنيم. ( x مشتق
Διαβάστε περισσότερα1 ﺶﻳﺎﻣزآ ﻢﻫا نﻮﻧﺎﻗ ﻲﺳرﺮﺑ
آزمايش 1 بررسي قانون اهم بررسي تجربي قانون اهم و مطالعه پارامترهاي مو ثر در مقاومت الكتريكي يك سيم فلزي تي وري آزمايش هر و دارند جسم فيزيكي داراي مقاومت الكتريكي است. اجسام فلزي پلاستيك تكه يك بدن انسان
Διαβάστε περισσότεραمربوطند. با قراردادن مقدار i در معادله (1) داريم. dq q
مدارهاي تا بحال به مدارهايي پرداختيم كه در ا نها اجزاي مدار مقاومت بودند و در ا نها جريان با زمان تغيير نميكرد. در اينجا خازن را به عنوان يك عنصر مداري معرفي ميكنيم خازن ما را به مفهوم جريانهاي متغير با
Διαβάστε περισσότεραرياضي 1 و 2 تابع مثال: مثال: 2= ميباشد. R f. f:x Y Y=
رياضي و رياضي و تابع تعريف تابع: متغير y را تابعي از متغير در حوزه تعريف D گويند اگر به ازاي هر از اين حوزه يا دامنه مقدار معيني براي متغير y متناظر باشد. يا براي هر ) y و ( و ) y و ( داشته باشيم ) (y
Διαβάστε περισσότεραﻴﻓ ﯽﺗﺎﻘﻴﻘﺤﺗ و ﯽهﺎﮕﺸﻳﺎﻣزﺁ تاﺰﻴﻬﺠﺗ ﻩﺪﻨﻨﮐ
دستوركارآزمايش ميز نيرو هدف آزمايش: تعيين برآيند نيروها و بررسي تعادل نيروها در حالت هاي مختلف وسايل آزمايش: ميز مدرج وستون مربوطه, 4 عدد كفه وزنه آلومينيومي بزرگ و قلاب با نخ 35 سانتي, 4 عدد قرقره و پايه
Διαβάστε περισσότεραرا بدست آوريد. دوران
تجه: همانطر كه در كلاس بارها تا كيد شد تمرينه يا بيشتر جنبه آمزشي داشت براي يادگيري بيشتر مطالب درسي بده است مشابه اين سه تمرين كه در اينجا حل آنها آمده است در امتحان داده نخاهد شد. m b الف ماتريس تبديل
Διαβάστε περισσότεραحل J 298 كنيد JK mol جواب: مييابد.
تغيير ا نتروپي در دنياي دور و بر سيستم: هر سيستم داراي يك دنياي دور و بر يا محيط اطراف خود است. براي سادگي دنياي دور و بر يك سيستم را محيط ميناميم. محيط يك سيستم همانند يك منبع بسيار عظيم گرما در نظر گرفته
Διαβάστε περισσότερα+ Δ o. A g B g A B g H. o 3 ( ) ( ) ( ) ; 436. A B g A g B g HA است. H H برابر
ا نتالپي تشكيل پيوند وا نتالپي تفكيك پيوند: ا نتالپي تشكيل يك پيوندي مانند A B برابر با تغيير ا نتالپي استانداردي است كه در جريان تشكيل ا ن B g حاصل ميشود. ( ), پيوند از گونه هاي (g )A ( ) + ( ) ( ) ;
Διαβάστε περισσότεραدر اين آزمايش ابتدا راهاندازي موتور القايي روتور سيمپيچي شده سه فاز با مقاومتهاي روتور مختلف صورت گرفته و س سپ مشخصه گشتاور سرعت آن رسم ميشود.
ك ي آزمايش 7 : راهاندازي و مشخصه خروجي موتور القايي روتور سيمپيچيشده آزمايش 7: راهاندازي و مشخصه خروجي موتور القايي با روتور سيمپيچي شده 1-7 هدف آزمايش در اين آزمايش ابتدا راهاندازي موتور القايي روتور
Διαβάστε περισσότεραa a VQ It ميانگين τ max =τ y= τ= = =. y A bh مثال) مقدار τ max b( 2b) 3 (b 0/ 06b)( 1/ 8b) 12 12
مقاومت مصالح بارگذاري عرضي: بارگذاري عرضي در تيرها باعث ايجاد تنش برشي ميشود كه مقدار آن از رابطه زير قابل محاسبه است: كه در اين رابطه: - : x h q( x) τ mx τ ( τ ) = Q I برش در مقطع مورد نظر در طول تير
Διαβάστε περισσότερα(,, ) = mq np داريم: 2 2 »گام : دوم« »گام : چهارم«
3 8 بردارها خارجي ضرب مفروضاند. (,, ) 3 و (,, 3 ) بردار دو تعريف: و ميدهيم نمايش نماد با را آن كه است برداري در خارجي ضرب ( 3 3, 3 3, ) m n mq np p q از: است عبارت ماتريس دترمينان در اينكه به توجه با اما
Διαβάστε περισσότεραبرخوردها دو دسته اند : 1) كشسان 2) ناكشسان
آزمايش شماره 8 برخورد (بقاي تكانه) وقتي دو يا چند جسم بدون حضور نيروهاي خارجي طوري به هم نزديك شوند كه بين آنها نوعي برهم كنش رخ دهد مي گوييم برخوردي صورت گرفته است. اغلب در برخوردها خواستار اين هستيم
Διαβάστε περισσότεραP = P ex F = A. F = P ex A
محاسبه كار انبساطي: در ترموديناميك اغلب با كار ناشي از انبساط يا تراكم سيستم روبرو هستيم. براي پي بردن به اين نوع كار به شكل زير خوب توجه كنيد. در اين شكل استوانهاي را كه به يك پيستون بدون اصطكاك مجهز
Διαβάστε περισσότεραآزمایش 2: تعيين مشخصات دیود پيوندي PN
آزمایش 2: تعيين مشخصات دیود پيوندي PN هدف در اين آزمايش مشخصات ديود پيوندي PN را بدست آورده و مورد بررسي قرار مي دهيم. وسايل و اجزاي مورد نياز ديودهاي 1N4002 1N4001 1N4148 و يا 1N4004 مقاومتهاي.100KΩ,10KΩ,1KΩ,560Ω,100Ω,10Ω
Διαβάστε περισσότεραمحاسبه ی برآیند بردارها به روش تحلیلی
محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور
Διαβάστε περισσότεραمعادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد:
شکل کلی معادلات همگن خطی مرتبه دوم با ضرایب ثابت = ٠ cy ay + by + و معادله درجه دوم = ٠ c + br + ar را معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: c ١ e r١x
Διαβάστε περισσότεραمثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0
مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله
Διαβάστε περισσότεραاست). ازتركيب دو رابطه (1) و (2) داريم: I = a = M R. 2 a. 2 mg
دستوركارآزمايش ماشين آتوود قانون اول نيوتن (قانون لختي يا اصل ماند): جسمي كه تحت تا ثيرنيروي خارجي واقع نباشد حالت سكون يا حركت راست خط يكنواخت خود را حفظ مي كند. قانون دوم نيوتن (اصل اساسي ديناميك): هرگاه
Διαβάστε περισσότεραجلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.
محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک
Διαβάστε περισσότεραV o. V i. 1 f Z c. ( ) sin ورودي را. i im i = 1. LCω. s s s
گزارش کار ا زمايشگاه اندازهگيري و مدار ا زمايش شمارهي ۵ مدار C سري خروجي خازن ۱۳ ا بانماه ۱۳۸۶ ي م به نام خدا تي وري ا زمايش به هر مداري که در ا ن ترکيب ي از مقاومت خازن و القاگر به کار رفتهشده باشد مدار
Διαβάστε περισσότεραآزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ
آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ هدف در اين آزمايش با نحوه كار و بخشهاي مختلف اسيلوسكوپ آشنا مي شويم. ابزار مورد نياز منبع تغذيه اسيلوسكوپ Function Generator شرح آزمايش 1-1 اندازه گيري DC با اسيلوسكوپ
Διαβάστε περισσότεραˆÃd. ¼TvÃQ (1) (2) داشت: ( )
تغيير ا نتالپي : ΔH بيشتر واكنشها در شيمي در فشار ثابت انجام ميگيرند. سوختن كبريت در هواي ا زاد و همچنين واكنش خنثي شدن سود با سولفوريك اسيد در يك بشر نمونه اي از واكنشهايي هستند كه در فشار ثابت انجام
Διαβάστε περισσότεραروش محاسبه ی توان منابع جریان و منابع ولتاژ
روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این
Διαβάστε περισσότεραگروه رياضي دانشگاه صنعتي نوشيرواني بابل بابل ايران گروه رياضي دانشگاه صنعتي شاهرود شاهرود ايران
و ۱ دسترسي در سايت http://jnrm.srbiau.ac.ir سال دوم شماره ششم تابستان ۱۳۹۵ شماره شاپا: ۱۶۸۲-۰۱۹۶ پژوهشهاي نوین در ریاضی دانشگاه آزاد اسلامی واحد علوم و تحقیقات دستهبندي درختها با عدد رومي بزرگ حسين عبدالهزاده
Διαβάστε περισσότεραتمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢
دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم
Διαβάστε περισσότεραدانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم
آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر
Διαβάστε περισσότεραپايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8
پايداری Stility اطمينان از پايداری سيستم های کنترل در زمان طراحی ا ن بسيار حاي ز اهمييت می باشد. سيستمی پايدار محسوب می شود که: بعد از تغيير ضربه در ورودی خروجی به مقدار اوليه ا ن بازگردد. هر مقدار تغيير
Διαβάστε περισσότεραقاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :
۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه
Διαβάστε περισσότεραآزمايش ارتعاشات آزاد و اجباري سيستم جرم و فنر و ميراگر
` آزمايشگاه ديناميك ماشين و ارتعاشات آزمايش ارتعاشات آزاد و اجباري سيستم جرم و فنر و ميراگر dynlab@jamilnia.ir www.jamilnia.ir/dynlab ١ تئوري آزمايش سيستمهاي ارتعاشي ميتوانند بر اثر تحريكات دروني يا بيروني
Διαβάστε περισσότεραهدف:.100 مقاومت: خازن: ترانزيستور: پتانسيومتر:
آزمايش شماره (10) تقويت كننده اميتر مشترك هدف: هدف از اين آزمايش مونتاژ مدار طراحي شده و اندازهگيري مشخصات اين تقويت كننده جهت مقايسه نتايج اندازهگيري با مقادير مطلوب و در ادامه طراحي يك تقويت كننده اميترمشترك
Διαβάστε περισσότεραDistributed Snapshot DISTRIBUTED SNAPSHOT سپس. P i. Advanced Operating Systems Sharif University of Technology. - Distributed Snapshot ادامه
Distributed Snapshot يك روش براي حل GPE اين بود كه پردازهي مبصر P 0 از ديگر پردازهها درخواست كند تا حالت محلي خود را اعلام كنند و سپس آنها را باهم ادغام كند. اين روش را Snapshot گوييم. ولي حالت سراسري
Διαβάστε περισσότεραسبد(سرمايهگذار) مربوطه گزارش ميكند در حاليكه موظف است بازدهي سبدگردان را جهت اطلاع عموم در
بسمه تعالي در شركت هاي سبدگردان بر اساس پيوست دستورالعمل تاسيس و فعاليت شركت هاي سبدگردان مصوب هيي ت مديره سازمان بورس بانجام مي رسد. در ادامه به اراي ه اين پيوست مي پردازيم: چگونگي محاسبه ي بازدهي سبد
Διαβάστε περισσότεραهدف: LED ديودهاي: 4001 LED مقاومت: 1, اسيلوسكوپ:
آزمايش شماره (1) آشنايي با انواع ديود ها و منحني ولت -آمپر LED هدف: هدف از اين آزمايش آشنايي با پايه هاي ديودهاي معمولي مستقيم و معكوس مي باشد. و زنر همراه با رسم منحني مشخصه ولت- آمپر در دو گرايش وسايل
Διαβάστε περισσότεραمقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره
مقاطع مخروطي فصل در اين فصل ميخوانيم:. تعريف مقاطع مخروطي. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره ث. طول مماس و طول وتر مينيمم ج. دورترين و نزديكترين
Διαβάστε περισσότερα( Δ > o) است. ΔH 2. Δ <o ( ) 6 6
تغييرات انرژي ضمن انحلال: اكثر مواد در موادي مشابه خود حل ميشوند و اين پديده را با برهمكنشهاي ميكروسكوپي بررسي كرديم. براي بررسي ماكروسكوپي اين پديده بايد تغييرات انرژي (ا نتالپي) و تغييرات بينظمي (ا نتروپي)
Διαβάστε περισσότεραمقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams
مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا
Διαβάστε περισσότεραR = V / i ( Ω.m كربن **
مقاومت مقاومت ويژه و رسانندگي اگر سرهاي هر يك از دو ميله مسي و چوبي را كه از نظر هندسي مشابهند به اختلاف پتانسيل يكساني وصل كنيم جريانهاي حاصل در ا نها بسيار متفاوت خواهد بود. مشخصهاي از رسانا كه در اينجا
Διαβάστε περισσότεραﺮﺑﺎﻫ -ﻥﺭﻮﺑ ﻪﺧﺮﭼ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ ﻱﺭﻮﻠﺑ ﻪﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻦﻴﻴﻌﺗ ﻪﺒـﺳﺎﺤﻣ ﺵﻭﺭ ﺩﺭﺍﺪﻧ ﺩﻮﺟﻭ ﻪ ﻱﺍ ﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻱﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﻱﺍﺮﺑ ﻲﻤﻴﻘﺘﺴﻣ ﻲﺑﺮﺠﺗ ﺵﻭﺭ ﹰﻻﻮﻤﻌﻣ ﻥﻮﭼ ﻱﺎ ﻩﺩ
تعيين انرژي بلوري با استفاده از چرخه بورن - هابر چون معمولا روش تجربي مستقيمي براي اندازهگيري انرژي اي وجود ندارد روش محاسبه اين انرژي براي تركيبات يوني اهميت بسياري مييابد. اما مقداري انرژي اي با استفاده
Διαβάστε περισσότεραهو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم
هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min
Διαβάστε περισσότεραآزمايش (٤) موضوع آزمايش: تداخل به وسيلهي دو شكاف يانگ و دو منشور فرنل
آزمايش (٤) موضوع آزمايش: تداخل به وسيلهي دو شكاف يانگ و دو منشور فرنل وسايل مورد نياز: طيف سنج دو شكاف يانگ لامپ سديم و منبع تغذيه ليزر هليوم نئون دو منشور فرنل دو عدد عدسي خط كش چوبي كوليس ريل اپتيكي
Διαβάστε περισσότεραDA-SM02-1 هدف : 2- مقدمه
DA-SM02 تست ضربه - هدف : تعيين مقدار انرژي شكست فلزات 2- مقدمه يكي از مساي ل مهم در صنعت كه باعث خسارات زيادي ميشود شكستن قطعات براثر تردي جنس آنها ميباشد. آزمايشهاي كشش و فشار با همه اهميت خود نميتوانند
Διαβάστε περισσότεραهدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله
آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده
Διαβάστε περισσότεραهر عملگرجبر رابطه ای روی يک يا دو رابطه به عنوان ورودی عمل کرده و يک رابطه جديد را به عنوان نتيجه توليد می کنند.
8-1 جبررابطه ای يک زبان پرس و جو است که عمليات روی پايگاه داده را توسط نمادهايی به صورت فرمولی بيان می کند. election Projection Cartesian Product et Union et Difference Cartesian Product et Intersection
Διαβάστε περισσότερα1. مقدمه بگيرند اما يك طرح دو بعدي براي عايق اصلي ترانسفورماتور كافي ميباشد. با ساده سازي شكل عايق اصلي بين سيم پيچ HV و سيم پيچ LV به
No. F-16-TRN-1277 عيب يابي عايق كاغذ روغن ترانسفورماتور قدرت به روش FDS محمد مرتاضي احمد مرادي دانشگاه آزاد اسلامي واحد تهران جنوب تهران ايران چكيده سنجش حوزه ي فركانس سيستم هاي عايقي كاغذ روغن روش تشخيص
Διαβάστε περισσότεραآزمایش 8: تقویت کننده عملیاتی 2
آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده
Διαβάστε περισσότερα1- مقدمه است.
آموزش بدون نظارت شبكه عصبي RBF به وسيله الگوريتم ژنتيك محمدصادق محمدي دانشكده فني دانشگاه گيلان Email: m.s.mohammadi@gmail.com چكيده - در اين مقاله روشي كار آمد براي آموزش شبكه هاي عصبي RBF به كمك الگوريتم
Διαβάστε περισσότερα1سرد تایضایر :ميناوخ يم سرد نيا رد همانسرد تلااؤس یحيرشت همان خساپ
1 ریاضیات درس در اين درس ميخوانيم: درسنامه سؤاالت پاسخنامه تشریحی استخدامی آزمون ریاضیات پرورش و آموزش بانک آزمونهای از اعم کشور استخدامی آزمونهای تمام در ریاضیات پرسشهای مجموعهها میشود. ارائه نهادها و
Διαβάστε περισσότεραچكيده. Keywords: Nash Equilibrium, Game Theory, Cournot Model, Supply Function Model, Social Welfare. 1. مقدمه
اثرات تراكم انتقال بر نقطه تعادل بازار برق در مدل هاي كورنات و Supply Function منصوره پيدايش * اشكان رحيمي كيان* سيد محمدحسين زندهدل * مصطفي صحراي ي اردكاني* *دانشكده مهندسي برق و كامپيوتر- دانشگاه تهران
Διαβάστε περισσότεραمدلسازی عيب های داخلی ترانسفورمر با استفاده از MATAB ميترا سرهنگ زاده شرکت توزيع نيروی برق تبريز Mitsar1979@yahoo.co.in خلاصه هدف اين مقاله مدلسازي عيب هاي ترانسفورمر قدرت است. طرفين ترانسفورمر سه فاز
Διαβάστε περισσότερα: O. CaCO 3 (1 CO (2 / A 11 بوده و مولكولي غيرقطبي ميباشد. خصوصيتهاي
شيمي آلي مدرسان شريف رتبه يك كارشناسي ارشد شيمي آلي شيمي موادي تركيبها را در آزمايشگاه نميتوان فصل اول «مباني شيمي آلي» است كه با موجودات زنده ارتباط دارد. تا اواسط قرن نوزدهم ميلادي اعتقاد بر اين بود
Διαβάστε περισσότερα98-F-TRN-596. ترانسفورماتور بروش مونيتورينگ on-line بارگيري. Archive of SID چكيده 1) مقدمه يابد[
و 98-F-TRN-596 محاسبه جهشهاي حرارتي و عمر از دست رفته ترانسفورماتور بروش مونيتورينگ n-line بارگيري آرش آقايي فر- حسين عزيزي موسسه تحقيقات ترانسفورماتور ايران واژه هاي كليدي: بارگيري ترانسفورماتور قدرت
Διαβάστε περισσότεραt a a a = = f f e a a
ا زمايشگاه ماشينه يا ۱ الکتريکي ا زمايش شمارهي ۴-۱ گزارش کار راهاندازي و تنظيم سرعت موتورهايي DC (شنت) استاد درياباد نگارش: اشکان نيوشا ۱۶ ا ذر ۱۳۸۷ ي م به نام خدا تي وري ا زمايش شنت است. در اين ا زمايش
Διαβάστε περισσότεραآزمايشگاه ديناميك ماشين و ارتعاشات آزمايش چرخ طيار.
` آزمايشگاه ديناميك ماشين و ارتعاشات dynlab@jamilnia.ir www.jamilnia.ir/dynlab ١ تئوري آزمايش چرخ طيار يا چرخ ل نگ (flywheel) صفحه مدوري است كه به دليل جرم و ممان اينرسي زياد خود قابليت بالايي در ذخيرهسازي
Διαβάστε περισσότεραدر اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا ن رسم ميشود.
ا زمايش 4: راهاندازي و مشخصه خروجي موتور القايي با رتور سيمپيچي شده 1-4 هدف ا زمايش در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا
Διαβάστε περισσότεραمقدمه دسته بندي دوم روش هاي عددي دامنه محدود اهداف: هاي چندجمله اي رهيافت هاي محاسباتي: سعي و خطا دامنه نامحدود
اهداف: محاسبه ريشه دستگاه دسته عدم وابسته معادالت ريشه هاي چندجمله اي معادالت غيرخطي بندي وابستگي به روش به مشتق مشتق تابع مقدمه غير خطي هاي عددي تابع دسته بندي دوم روش هاي عددي دامنه محدود دامنه نامحدود
Διαβάστε περισσότεραجلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز
تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی
Διαβάστε περισσότεραفصل اول ماتریس و کاربردها
فصل اول ماتریس و کاربردها اول فصل ماتریسها روی اعمال و ماتریس اول: درس ماتریس حقیقی عدد هر است. ماتریس یک ستون و سطر تعدادی شامل حقیقی عددهای از مستطیلی آرایش هر مینامیم. ماتریس آن درایة را ماتریس هر در
Διαβάστε περισσότεραآزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ(
آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( فرض کنید جمعیت یک دارای میانگین و انحراف معیار اندازه µ و انحراف معیار σ باشد و جمعیت 2 دارای میانگین µ2 σ2 باشند نمونه های تصادفی مستقل از این دو جامعه
Διαβάστε περισσότεραكار شماره توانايي عنوان آموزش
پنجم بخش منطقي گيتهاي و ديجيتال : كلي هدف ديجيتال در پايه مدارهاي عملي و نظري تحليل واحد كار شماره توانايي توانايي عنوان آموزش زمان نظري عملي جمع 22 2 آنها كاربرد و ديجيتال سيستمهاي بررسي توانايي 2 U8
Διαβάστε περισσότεραدر کدام قس مت از مسیر انرژی جنبشی دستگاه بیشینه و انرژی پتانسیل گرانشی آن کمینه است
در کدام قس مت از مسیر انرژی جنبشی دستگاه بیشینه و انرژی پتانسیل گرانشی آن کمینه است فيزيك سیمای فصل -5 كار -5 كار و انرژي جنبشي 3-5 پايستگي انرژي مكانيكي 4-5 توان پرسشهاي مفهومي مسئلهها 86 فصل پنجم/کار
Διαβάστε περισσότεραجلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: هیربد کمالی نیا جلسه 9 1 مدل جعبه-سیاه یا جستاري مدل هایی که در جلسه ي پیش براي استفاده از توابع در الگوریتم هاي کوانتمی بیان
Διαβάστε περισσότερα1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }
هرگاه دسته اي از اشیاء حروف و اعداد و... که کاملا"مشخص هستند با هم در نظر گرفته شوند یک مجموعه را به وجود می آورند. عناصر تشکیل دهنده ي یک مجموعه باید دو شرط اساسی را داشته باشند. نام گذاري مجموعه : الف
Διαβάστε περισσότεραچكيده واژههاي كليدي: منحني L تنظيم تيخونف OTSVD لرزه پايينچاهي مقدمه 1 شده و. x true مو لفه مربوط به نوفههاي تصادفي و ديگري مو لفه مربوط.
مجلة فيزيك زمين و فضا دوره 33 شماره 1386 صفحة 1-3 قطع بهينة تجزيه مقادير تكين در حل مسي لههاي معكوس خطي *1 علي غلامي و عبدالرحيم جواهريان 1 دانشجوي كارشناسي ارشد ژي وفيزيك مو سسة ژي وفيزيك دانشگاه تهران
Διαβάστε περισσότεραتصاویر استریوگرافی.
هب انم خدا تصاویر استریوگرافی تصویر استریوگرافی یک روش ترسیمی است که به وسیله آن ارتباط زاویه ای بین جهات و صفحات بلوری یک کریستال را در یک فضای دو بعدی )صفحه کاغذ( تعیین میکنند. کاربردها بررسی ناهمسانگردی
Διαβάστε περισσότερα5 TTGGGG 3 ميگردد ) شكل ).
تكميل انتهاهاي مولكولهاي خطي DNA با توجه به اينكه RNA هاي پرايمر بايد از انتهاي مولكولهاي DNA برداشته شوند سي وال اين است در اين صورت انتهاي DNA هاي خطي چگونه تكميل ميگردد. در هنگام همانندسازي نه تنها
Διαβάστε περισσότεραتئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.
مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از
Διαβάστε περισσότερα3 و 2 و 1. مقدمه. Simultaneous كه EKF در عمل ناسازگار عمل كند.
بررسي سازگاري تخمين در الگوريتم EKF-SLAM و پيشنهاد يك روش جديد با هدف رسيدن به سازگاري بيشتر فيلتر و كاستن هرينه محاسباتي امير حسين تمجيدي حميد رضا تقيراد نينا مرحمتي 3 و و گروه رباتيك ارس دپارتمان كنترل
Διαβάστε περισσότεραنقض CP و چكيده ١. مقدمه مغايرت دارد. پست الكترونيكي:
مجلة پژوهش فيزيك ايران جلد ۱۳ شمارة ۴ زمستان ۱۳۹۲ نقض CP و گذار فاز الكتروضعيف در مدل دو هيگزي مسلم احمدوند گروه فيزيك دانشگاه شهيد بهشتي پست الكترونيكي: moslemph@gmailom (دريافت مقاله: ۱۳۹۲/۵/۲ دريافت
Διαβάστε περισσότερα(POWER MOSFET) اهداف: اسيلوسكوپ ولوم ديود خازن سلف مقاومت مقاومت POWER MOSFET V(DC)/3A 12V (DC) ± DC/DC PWM Driver & Opto 100K IRF840
منابع تغذيه متغير با مبدل DC به DC (POWER MOSFET) با ترانز يستور اهداف: ( بررسی Transistor) POWER MOSFET (Metal Oxide Semiconductor Field Effect براي كليد زني 2) بررسي مبدل DC به.DC كاهنده. 3) بررسي مبدل
Διαβάστε περισσότεραو دماي هواي ورودي T 20= o C باشد. طبق اطلاعات كاتالوگ 2.5kW است. در صورتي كه هوادهي دستگاه
1- بخاري گازسوز كارگاهي مدل انرژي از تعدادي مجرا تشكيل شده كه گازهاي احتراق در آن جريان دارد و در اثر عبور هوا از روي سطح خارجي اين پره ها توسط يك پروانه محوري fan) (axial گرما به هوا منتقل مي شود. توان
Διαβάστε περισσότεραجلسه ی ۵: حل روابط بازگشتی
دانشکده ی علوم ریاضی ساختمان داده ها ۶ مهر ۲ جلسه ی ۵: حل روابط بازگشتی مدر س: دکتر شهرام خزاي ی نگارنده: ا رمیتا ثابتی اشرف و علی رضا علی ا بادیان ۱ مقدمه پیدا کردن کران مجانبی توابع معمولا با پیچیدگی
Διαβάστε περισσότεραنﺎﻨﻛرﺎﻛ ﻲﺷزﻮﻣآ تﺎﻣﺪﺧ ﻲﻧﻧوﺎﻌﺗ ﺖﻛﺮﺷ رﻮﺸﻛ شزﻮﻣآ ﺶﺠﻨﺳ نﺎﻣزﺎﺳ تﻻاﺆﺳ ﻪﻧﻮﻤﻧ ﻲﺤﻳﺮﺸﺗ ﺦﺳﺎﭘ لوا لﺎﺴﻤﻴﻧ نﺎﻳﺎﭘ ﻲﺻﺎﺼﺘﺧا سورد (ﻲﻨﻓ و ﻲﺿﺎﻳر مﻮﻠﻋ ﻪﺘﺷر)
شركت تعاوني خدمات آموزشي كاركنان سنجش آموزش كشور سازمان تشريحي نمونه سو الات پاسخ دروس اختصاصي پايان نيمسال اول علوم رياضي و فني) ) (رشته ويژه داوطلبان سوم متوسطه سال ماه 9 آذر www.sanjeshserv.ir پاسخ
Διαβάστε περισσότεραاراي ه روشي نوين براي حذف مولفه DC ميراشونده در رلههاي ديجيتال
o. F-3-AAA- اراي ه روشي نوين براي حذف مولفه DC ميراشونده در رلههاي ديجيتال جابر پولادي دانشكده فني و مهندسي دانشگاه ا زاد اسلامي واحد علوم و تحقيقات تهران تهران ايران مجتبي خدرزاده مهدي حيدرياقدم دانشكده
Διαβάστε περισσότεραچكيده مقدمه SS7 گرديد. (UP) گفته ميشود. MTP وظيفه انتقال پيامهاي SS7 را User Part. Part هاي SS7 هستند. LI I FSN I BSN F
ه ب ٨٤١ شماره ۷ نشريه دانشکده فني, دوره ۴۲, شماره ۷, بهمن ماه ۱۳۸۷, از صفحه ۸۴۱ تا ۸۵۰ بهينهسازي تقسيم بار در شبكه سيگنالينگ چكيده ۱ رضا خليلي, ۲* ۱ مهدي شيرازي و احمد صلاحي ۱ شركت مخابرات استان تهران
Διαβάστε περισσότεραباشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g
تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی
Διαβάστε περισσότεραمتلب سایت MatlabSite.com
11-F-REN-1712 بررسي اثر مبدلهاي ماتريسي در كاهش اثر نوسانات باد در توربينهاي بادي مغناطيس داي م چكيده علي رضا ناطقي دانشكده برق و كامپيوتر - دانشگاه شهيد بهشتي حسين كاظمي كارگر دانشكده برق و كامپيوتر -
Διαβάστε περισσότεραيﺎﻫ ﻢﺘﻳرﻮﮕﻟا و ﺎﻫ ﺖﺧرد فاﺮﮔ ﻲﻤﺘﻳرﻮﮕﻟا ﻪﻳﺮﻈﻧ :سرد ﻲﺘﺸﻬﺑ ﺪﻴﻬﺷ هﺎﮕﺸﻧاد ﺮﺗﻮﻴﭙﻣﺎﻛ مﻮﻠﻋ هوﺮﮔ ﻪﻴﻟوا ﺞﻳﺎﺘﻧ و ﺎﻫﻒ ﻳﺮﻌﺗ
BFS DFS : درخت یک گراف همبند بدون دور است. جنگل یک گراف بدون دور است. پس هر مولفه همبندی جنگل درخت است. هر راس درجه 1 در درخت را یک برگ مینامیم. یک درخت فراگیر از گراف G یک زیردرخت فراگیر از ان است که
Διαβάστε περισσότεραچرخ و شانه زمان آموزش يک ساعت و 30 دقيقه 19 ساعت 22 ساعت جمع 4- سیستم جابجایی سوپرت طولی دستگاه تراش چگونه است
چرخ و شانه زمان آموزش توانايي تراشیدن دندههای شانهای ساده و مایل با ماشین فرز نظري عملي يک ساعت و 30 دقيقه 19 ساعت ارزشيابي ورودی و پاياني توسط هنرآموز و ثبت در برگه ارزشیابی جمع 30 دقیقه یک ساعت 22 ساعت
Διαβάστε περισσότεραنيمتوان پرتو مجموع مجموع) منحني
شبيه سازي مقايسه و انتخاب روش بهينه پيادهسازي ردگيري مونوپالس در يك رادار آرايه فازي عباس نيك اختر حسن بولوردي صنايع الكترونيك شيراز Abbas.nikakhtar@Gmail.com صنايع الكترونيك شيراز hasan_bolvardi@yahoo.com
Διαβάστε περισσότερα* خلاصه
دانشجوي- ششمين كنگره ملي مهندسي عمران 6 و 7 ارديبهشت 39 دانشگاه سمنان سمنان ايران بررسي و مقايسه همگرايي پايداري و دقت در روشهاي گام به گام انتگرالگيري مستقيم زماني 3 سبحان رستمي * علي معينالديني حامد
Διαβάστε περισσότεραProblems In Mathematical Analysis 1,2. Authors: Hassan Jolany A.Sadighi (Assistant Professor In Islamic Azad University of Tabriz)
Plems I Mthemtcl Alyss, Auths: Hss Jly A.Sdgh (Assstt Pess I Islmc Azd Uvesty Tz) فصل شمارايی ناشمارايی فصل شمارايی ناشمارايی. I سال ) ثابت کنيد مجمعه اعداد حقيقی (R) ناشماراست. (از رش کانتر استفاده نشد).
Διαβάστε περισσότεραجلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از
Διαβάστε περισσότερα(al _ yahoo.co.uk) itrc.ac.ir) چكيده ١- مقدمه
تشخيص جنسيت افراد از روي چهره با استفاده از شبكههاي عصبي پرسپترون چند لايه ای با الگوريتم پس انتشار خطا علي يوسفي کامبيز بديع (عضو هيي ت علمي دانشگاه ا زاد واحد همدان (گروه پژوهشی جامعه اطلاعاتی مرکز تحقيقات
Διαβάστε περισσότεραآزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك
آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت
Διαβάστε περισσότεραیﺭﺎﺘﻓﺭ یﺭﺎﺘﻓﺭ یﺎﻫ یﺎﻫ ﻑﺪﻫ ﻑﺪﻫ
دهم فصل اندازه گذارى ساعات آموزش نظری عملی جمع ٤ ٣ ١ فصل دهم كند. های رفتاری هدف پس از پايان اين فصل از هنرجو انتظار می رود: 1 لزوم اندازه گذاری را تعريف كند. 2 علايم اندازه گذاری را طبق استاندارد شناسايی
Διαβάστε περισσότεραجلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال
نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه
Διαβάστε περισσότεραجلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان
هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر
Διαβάστε περισσότεραبررسي علل تغيير در مصرف انرژي بخش صنعت ايران با استفاده از روش تجزيه
79 نشريه انرژي ايران / دوره 2 شماره 3 پاييز 388 بررسي علل تغيير در مصرف انرژي بخش صنعت ايران با استفاده از روش تجزيه رضا گودرزي راد تاريخ دريافت مقاله: 89//3 تاريخ پذيرش مقاله: 89/4/5 كلمات كليدي: اثر
Διαβάστε περισσότεραتلفات کل سيستم کاهش مي يابد. يکي ديگر از مزاياي اين روش بهبود پروفيل ولتاژ ضريب توان و پايداري سيستم مي باشد [-]. يکي ديگر از روش هاي کاهش تلفات سيستم
اراي ه روشي براي کاهش تلفات در سيستم هاي توزيع بر مبناي تغيير محل تغذيه سيستم هاي توزيع احد کاظمي حيدر علي شايانفر حسن فشکي فراهاني سيد مهدي حسيني دانشگاه علم و صنعت ايران- دانشکده مهندسي برق چکيده براي
Διαβάστε περισσότεραهلول و هتسوپ لدب م ١ لکش
دوفازي با كيفيت صورت مخلوط به اواپراتور به 1- در اواپراتور كولر يك اتومبيل مبرد R 134a با دبي 0.08kg/s جريان دارد. ورودي مبرد مي شود و محيط بيرون در دماي 25 o C وارد از روي اواپراتور از بخار اشباع است.
Διαβάστε περισσότεραچكيده 1- مقدمه درخت مشهد ايران فيروزكوه ايران باشد [7]. 5th Iranian Conference on Machine Vision and Image Processing, November 4-6, 2008
پنهاني سازي تصوير با استفاده از تابع آشوب و درخت جستجوي دودويي رسول عنايتي فر دانشكده مهندسي كامپيوتر دانشگاه آزاد اسلامي فيروزكوه ايران r.enayatifar@iaufb.ac.ir مرتضي صابري كمرپشتي دانشكده مهندسي كامپيوتر
Διαβάστε περισσότεραتحليل جريان سيال غيرنيوتني در لوله مخروطي همگرا با استفاده از مدل بينگهام
١ پيمان شوبي دانشجوي كارشناسي ارشد ٢ حسين مهبادي دانشيار ٣ آرمن آداميان استاديار تحليل جريان سيال غيرنيوتني در لوله مخروطي همگرا با استفاده از مدل بينگهام در اين مقاله جريان لايه هاي سيال بينگهام در يك
Διαβάστε περισσότεραسعيدسيدطبايي. C=2pF T=5aS F=4THz R=2MΩ L=5nH l 2\µm S 4Hm 2 بنويسيد كنييد
تمرينات درس اندازه گيري دانشگاه شاهد سعيدسيدطبايي تمرين سري 1 و 2 سوال 1: اندازه گيري را تعريف كرده مشخصات شاخص و دستگاه اندازه گيري را بنويسيد منظور از كاليبراسيون و تنظيم چيست. تفاوت دستگاههاي اندازه
Διαβάστε περισσότεραيون. Mg + ا نزيم DNA پليمراز III
مراحل همانندسازي DNA همانندسازي DNA را ميتوان به سه مرحله تقسيم كرد : ۱. مرحله ا غاز phase) :(Initiation شامل شناسايي مبدا همانندسازي تشكيل كمپلكس شروع همانندسازي يا ريپليزوم و اضافه شدن چند نوكلي وتيد
Διαβάστε περισσότερα